Chapter 4. The enterprise cloud computing paradigm

- Enterprise cloud computing
 * The alignment of a cloud computing model with an organization’s business objectives (profit, return on investment, reduction of operations costs) and processes

(a) Background

- NIST: five characteristics of cloud computing
 → On-demand self-service, broad network access, resource pooling, rapid elasticity, and measured service
 * How these characteristics manifest in an enterprise context vary according to the deployment model employed

- Deployment models for enterprise cloud computing
 * Public cloud: managed by cloud providers for general public
 * Private cloud: managed by an organization for internal use only
 * Community cloud: shared by several organizations and support a specific community
 # May be managed by the organizations or a third party
 # May exist on premise or off premise
 * Hybrid cloud: composition of two or more clouds (private, community, or public)

- Critical questions for selecting enterprise cloud computing strategies:
* Will an enterprise cloud strategy increase overall business value?
* Are the effort and risks associated with transitioning to an enterprise cloud strategy worth it?
* Which areas of business and IT capability should be considered for the enterprise cloud?
* How can the process of transitioning to an enterprise cloud strategy be piloted and systematically executed?

- The above questions are addressed from two perspectives: adoption and consumption

* Adoption strategies: an organization makes a decision to adopt a cloud computing model based on fundamental drivers–scalability, availability, cost, and convenience
 # Scalability-driven strategy
 - Objective: support increasing workloads without investment and expenses exceeding returns
 - Effort, costs (CAPEX and OPEX), and time invested on the cloud should be less than hardware and software procurement and licensing process
 # Availability-driven strategy
 - Assure IT capabilities and functions are accessible, usable, and acceptable by the standards of users
 # Market-driven strategy
 - Identify and acquire the “best deals” for IT capabilities as demand and supply change
 - Enable ongoing reductions in CAPEX and OPEX
 - More suitable for small, agile organizations that do not have massive investments in IT
 # Convenience-driven strategy
- Reduce the load and need for dedicated system administrations and make easier user access to IT capabilities, regardless of their location

* Consumption strategies: an organization makes decision about how to best deploy its data and software using its internal resources and those of the selected cloud data center (CDC)

Software provision

→ Use CDC’s software (SaaS) but maintain data internally

- Choose this strategy when
* the elasticity requirement is high for software and low for data
* the controllability concerns are low for software and high for data
* the cost reduction concerns are high for software and low for data (i.e., data are highly sensitive)

- Needs
 * software in CDC to access internal data
 * to change some firewall properties for secure data access (e.g., VPN, proxy, or gateway)

Storage provision
→ Rely on CDC’s storage
- Choose this strategy when
 * the elasticity requirement is high for data and low for software
 * the controllability concerns are high for software and low for data
 * the cost reduction concerns are high for data and low for software

- Other advantages
 * Sharing data between organizations is easy
 * Storage provision is fast
 * Management of storage utilization is easy

Solution provision
→ Rely on the CDC for both software and software data; i.e., placing the entire IT solution (software and data) in the domain of the CDC
- Choose this strategy when
 * the elasticity and cost reduction requirements are high both for software and data
* the controllability requirements can be entrusted to the CDC

Redundancy services
→ The organization switches between traditional, software, storage, or solution management based on changes in its operational conditions and business demands
- Software, storage, or solution services can be implemented using redundancy: a hybrid strategy
- Users can redirect to the CDC for maintaining functionality availability, performance, or response time
- Usually, the CDC is used for disaster recovery, fail-over, and load-balancing
- Business continuity is the main concern to prevent massive losses due downtime and degradation of QoS

(b) **Issues for enterprise applications on the cloud**

- Enterprise resources planning (ERP)
 * Purposes of ERP:
 # Equip enterprises with a tool to optimize their business processes with a seamless, integrated information flow from suppliers through to manufacturing and distribution
 # Provide the ability to effectively plan and control all resources necessary in the face of growing consumer demands, globalization, and competition
 * Transition to the cloud ERP
 # Requires a balance of strategic and operational steps guided by socio-technical considerations, continuous evaluation, and tracking mechanisms
Involves a complex transition from legacy information systems and business processes to an integrated IT infrastructure and common business process throughout the organization
* Research showed that enterprises are willing to migrate both their production loads and the test and development workloads to the cloud

- Transactional capabilities
 * Transactional type of applications:
 # Systems that manage transaction-oriented applications → mission-critical functions
 # Typically using relational databases
 # Also called On-Line Transaction Processing (OLTP) applications
 # Rely on strong **atomicity, consistency, isolation, and durability (ACID)** properties
 # Write-update intensive
 # For examples: sales and distributions (SD), banking and financials, customer relationship management (CRM), and supply chain management (SCM)
 * Challenges to deploy in the cloud:
 # Classical transactional systems use a shared-everything architecture; whereas cloud platforms mostly consist of shared-nothing commodity hardware
 # ACID properties are difficult to guarantee for current cloud-based data management and storage systems
 # Opportunities: highly complex enterprise applications are decomposed into simpler functional components, e.g.:
 - salesforce.com focuses on CRM-related applications
- taleo.com offers on-demand Human Relationship (HR) applications
 # Now leading software providers are offering tailored business suite solutions, e.g., SAP Business ByDesign

- Analytical capabilities
 * Analytical type of applications
 # Provide business reporting, marketing, budgeting, and forecasting (Business Intelligence, BI)
 # Also called On-Line Analytical Processing (OLAP)
 # Efficiently answer multi-dimensional queries for analysis, reporting, and decision support
 # Systems tend to be read-most or read-only, and ACID are not required
 # Better suited to run in a cloud
 # Analytics as a Service (or Agile Analytics): service providers offer on-demand BI and analytic services
 - Data sources can be processed using elastic computing resources on-demand, accessible via APIs, web services, SQL, BI, and data mining tools
 - E.g.: SAP BusinessObjects BI OnDemand, IBM Cognos Now!

(c) Challenges of ERP Transition
- Challenges of ERP transition
 → Can be classified in 5 categories, i.e., the 5 aspects of enterprise cloud stages: build, develop, migrate, run, and consume
* Understanding the state of the enterprise’s IT
 # Which IT is already, can, and cannot be transited
 # IaaS is most popular and easiest, but are there opportunities for PaaS and SaaS?
 # *Unplanned cloud* spreads throughout the organization (small cloud islands): what’s the company-wide cloud approach?

* Migrating the existing (legacy) applications to the cloud
 # Average lifetime of an ERP product is about 15 years
 → Sooner or later, the company needs to evolve toward the new IT paradigm
 # Planning, negotiation, and testing are required just as those for the classical software
 # Migration to the cloud depends on the concept of decoupling of processes: work needs to be organized using a process (or service) centric mode, rather than the standard “silo” mode
commonly used in IT (server, network, storage, database, …)

* Applications may need reengineering
 # Redeveloping applications involves completely different concepts: governance, reliability, security/trust, data management, and control/predictability
 # Future enterprise application development frameworks will need to enable the separation of data management from ownership

* Operation challenges
 # Running the enterprise cloud
 - IT operations will be different from what they are now: update and upgrade of IT department’s components
 # Running applications on the enterprise cloud
 - Interoperability between in-house infrastructure and service and the CDC

* Consuming the cloud
 # Two pricing models: allocation based and usage based
 - Allocation based: allocating resources for a fixed amount of time
 - Usage based: no reservations, resources are allocated as a per need basis
 # Challenge: finding the right combination of billing and consumption model for every services

(d) **Enterprise cloud technology and market evolution**

- Technology drivers for enterprise cloud computing evolution
 * Open interoperable standards
Eliminate vendor lock-in, e.g., barriers of proprietary interface, formats, and protocols
Standardization initiatives: OGF OCCI for compute clouds, SNIA CDMI for storage and data management, DMTF Virtualization Management (VMAN), DMTF Cloud Incubator, …
Main cloud providers (Google, Amazon, IBM, Microsoft, …) currently do not actively participate in these efforts

* Cloud resources and services perform according to the business requirements
 # Reducing underperforming resources or service disruptions
 # Services with primitive SLAs or non-existing SLA is bound to change
 # Sophisticated monitoring and reporting capabilities: allow customers to comprehend and analyze the operations of the cloud resources and services
 # Allow even third-party independent vendors to measure the performance and health of cloud resources and services

* Divergence from the traditional RDBMS based data store backend
 # Traditional relational data models are no longer the mainstream in the cloud
 # Alternative data storage technologies: Amazon Dynamo, Facebook Cassandra, Google BigTable, NoSQL movement, …

- Market trends of the cloud services stacks
 * SaaS market trends
 # Has he most growth potential
 # Currently, most SaaS solutions are edge applications like supplier management, talent management, performance management, …
Desperately need integration between SaaS offered by different cloud providers

* PaaS market trends
 # PaaS is predominantly used for developing situational applications to exploit the rapid development cycles
 # Especially for projects with tight timeframe to bring to the solutions to the market
 # Focusing on innovation aspects and gaining competitive edge
 # PaaS market will consolidate into a smaller number of service providers

* IaaS market trends
 # Attractive for small companies or startups that don’t have enough capital and human resources to afford internal infrastructures
 # Enterprise and large organizations are also experimenting IaaS services

- Cloud service brokerages
 * Cloud services would eventually become complex to be handled directly by the consumers
 * Meta-services or cloud brokerage services will emerge
 * Brokerage would use several types of brokers and platforms to enhance cloud service
 * Foreseeable Cloud service brokerages (CSB):
 # Cloud service intermediation: directly enhance a given cloud service
 # Aggregation: combines multiple services into one or more new services
 # Cloud service arbitrage: provide flexibility and opportunistic choices for the service aggregator
(e) Business drivers toward a marketplace for enterprise cloud computing

- Porter’s five forces model
 * To understand the forces, offering and consuming players, and the motivations of the players in the cloud
 * Actors, products, and business models are clarified and structured

* The adjusted model for the cloud market:
 # Rivalry: amount of companies dealing with cloud and virtualization technology is quite high → the rivalry is high
 # Substitute: products and offers are quite various → there are many niche products
 # New entrants: cloud-virtualization market is booming → fight for customers and market
share is intense

Suppliers: initial cost for huge data centers are enormous
Buyers: low switching cost increases competition

Adjusted model for the cloud market
The cloud supply chain

- Cloud supply chain (C-SC) and cloud supply chain management (C-SCM)
 - Supply chain: two or more parties linked by a flow of goods, information, and funds
 - Cloud supply chain: two or more parties linked by the provision of cloud services, related information, and funds
 - Concept of C-SC:
Two categories of products:
- Functional products:
 * Favor competition and lead to low profit margins
 * Low inventory costs, low product variety, low stockout costs, and low obsolescence
- Innovative products:
 * Unpredictable, variable demand
 * High uncertainties, difficult to forecast
 * Short product life cycles (typically 3 months to 1 year)

- Comparison of traditional and emerging ICT supply chain

<table>
<thead>
<tr>
<th>Traditional Supply Chain Concepts</th>
<th>Emerging ICT Concept</th>
</tr>
</thead>
<tbody>
<tr>
<td>Primary goal</td>
<td></td>
</tr>
<tr>
<td>Efficient SC</td>
<td>Responsive SC</td>
</tr>
<tr>
<td>Supply demand at the lowest level</td>
<td>Respond quickly to</td>
</tr>
<tr>
<td>of cost</td>
<td>demand (changes)</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Product design strategy</td>
<td></td>
</tr>
<tr>
<td>Maximize performance at the</td>
<td>Create modularity</td>
</tr>
<tr>
<td>minimum product cost</td>
<td>to allow postponement</td>
</tr>
<tr>
<td></td>
<td>of product</td>
</tr>
<tr>
<td></td>
<td>differentiation</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Pricing strategy</td>
<td></td>
</tr>
<tr>
<td>Lower margins, because price is</td>
<td>Higher margins,</td>
</tr>
<tr>
<td>a</td>
<td>not a prime</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>prime customer driver</td>
</tr>
<tr>
<td>--------------------------</td>
<td>-----------------------</td>
</tr>
<tr>
<td>Manufacturing strategy</td>
<td>Lower costs through high utilization</td>
</tr>
<tr>
<td>Inventory strategy</td>
<td>Minimize inventory to lower cost</td>
</tr>
<tr>
<td>Lead time strategy</td>
<td>Reduce but not at the expense of costs</td>
</tr>
<tr>
<td>Supplier strategy</td>
<td>Select based on cost and quality</td>
</tr>
<tr>
<td>Transportation strategy</td>
<td>Greater reliance on low cost modes</td>
</tr>
</tbody>
</table>