Reversible data hiding based on multilevel histogram modification and sequential recovery

Zhenfei Zhaoa,b, Hao Luoc,∗, Zhe-Ming Luc, Jeng-Shyang Pand

a School of Information Science and Technology, Sun Yat-sen University, Guangzhou, China
b Heilongjiang Institute of Science and Technology, Harbin, China
c School of Aeronautics and Astronautics, Zhejiang University, No. 38 ZheDa Road, Hangzhou 310027, China
d Department of Electronic Engineering, National Kaohsiung University of Applied Sciences, Kaohsiung, Taiwan

\textbf{A R T I C L E I N F O}

\textbf{Article history:}
Received 14 January 2010
Accepted 21 January 2011

\textbf{Keywords:}
Reversible data hiding
Multilevel histogram modification
Sequential recovery

\textbf{A B S T R A C T}

This paper proposes a reversible data hiding method for natural images. Due to the similarity of neighbor pixels' values, most differences between pairs of adjacent pixels are equal or close to zero. In this work, a histogram is constructed based on these difference statistics. In the data embedding stage, a multilevel histogram modification mechanism is employed. As more peak points are used for secret bits modulation, the hiding capacity is enhanced compared with those conventional methods based on one or two level histogram modification. Moreover, as the differences concentricity around zero is improved, the distortions on the host image introduced by secret content embedding is mitigated. In the data extraction and image recovery stage, the embedding level instead of the peak points and zero points is used. Accordingly the affiliated information is much smaller than in those methods of the kind. A sequential recovery strategy is exploited for each pixel is reconstructed with the aid of its previously recovered neighbor. Experimental results and comparisons with other methods demonstrate our method's effectiveness and superior performance.

\begin{flushright}
© 2011 Elsevier GmbH. All rights reserved.
\end{flushright}

\textbf{1. Introduction}

Data hiding, also called information hiding, plays an important role in information security. It aims at embedding imperceptible confidential information in cover media such as still images, videos, audios, 3D meshes, etc. It consists of several branches such as steganography, watermarking, visual cryptography, etc. The data hiding scheme proposed in this work can be classified into the category of steganography. Steganography is usually used for covert communications. Thus the high embedding capacity is the main concern in this kind of technique. In contrast, watermarking is usually used for copyright protection and announcement. Thus researchers aim at improving the robustness of watermark content against intentional or unintentional attacks. Therefore, most available data hiding methods can provide a higher capacity than that provided by watermarking schemes. This advantage broadens the application scenarios of data hiding.

Nowadays, various data hiding techniques have been reported in literatures \cite{1,2,29–31}. As a burgeoning branch, reversible data hiding has drawn much attention among researchers. Its key property is not only the secret data but also the host image can be accurately recovered in decoder. Therefore, it can be used in those applications where the host images (e.g., military maps, remote sensing images, medical images \cite{11}, digitalized art pictures, etc.) must be exactly reconstructed. In contrast, the conventional irreversible data hiding methods are not appropriate any longer.

Available reversible data hiding techniques can be divided into spatial domain, transform domain and compressed domain methods. In the spatial domain based methods \cite{3–20}, the secret data is usually embedded by pixels' values modification. In the transform domain methods, some reversibility-guaranteed transforms (e.g., integer discrete cosine transform \cite{21,22}, integer wavelet transform \cite{23}) are exploited and the data embedding is reduced to coefficients modulation. In the compressed domain methods, some popular used image compression techniques (e.g., vector quantization \cite{24–26}, block truncation coding \cite{27}, MPEG coding \cite{28}) are involved.

Most spatial domain reversible data hiding are developed based on two principles, i.e., difference expansion \cite{DE} and histogram modification \cite{13–20}. In general, the former kind of methods can provide a higher capacity while the latter can produce a better quality marked image.

This paper proposes a reversible data hiding scheme based on histogram modification. Its principle is to modify the histogram constructed based on the neighbor pixel differences instead of the host image's histogram as in \cite{13}. Many peak points exist around
the bin zero in this histogram due to the similarity of adjacent pixel values. Besides, many zero points exist in both sides of the bin zero. Here the peak point refers to the height of histogram bin with the largest statistical value (i.e., the count falling in the corresponding bin), and the zero point means the histogram bin with zero value. In our case, all the differences are classified into levels of \([-255, 255]\) and each level corresponds to a histogram bin. Hence it is reasonable to modify the histogram with a multilevel mechanism for hiding more secret data. In decoder, the host image pixels are recovered one by one. That is, each pixel is recovered aided by its previously recovered neighbor. Meanwhile, the secret data is extracted from the marked adjacent pixels’ differences.

This paper is organized as follows. Section 2 reviews the related work. Section 3 describes the proposed scheme including data embedding, extraction and image recovery procedures. Section 4 discusses the capacity estimation, overflow and underflow prevention. Experimental results and performance comparisons with other algorithms are shown in Section 5. Finally, conclusions are given in Section 6.

2. Related work

In [13], Ni et al. proposed a reversible data hiding method based on histogram modification. In the scheme, part of the cover image histogram is shifted rightward or leftward to produce redundancy for data embedding. The principle can be illustrated as shown in Fig. 1. First, the peak and zero point bins of the original histogram are found denoted as \(b(P)\) and \(b(Z)\), respectively. Then all the bins belonging to \(b(P)\) and \(b(Z)\) are shifted rightward one level. In this way, the bin of \(b(P)\) is emptied and \(b(P+1)\) becomes the new peak point. Next, the confidential data can be embedded by modulating the pixel values equaling \(P+1\). That is, if encounter a pixel with value equaling \(P+1\), then one bit confidential data can be hidden. For example, if the current processing confidential bit is “0”, we modify the pixel value as \(P\); whereas if the current processing confidential bit is “1”, the pixel with value \(P+1\) is kept no changed. In decoder, the data extraction and image recovery is the inverse processing of data embedding.

In [16], Li et al. proposed a reversible data hiding method named adjacent pixel difference (APD) based on the neighbor pixel differences modification. In this method, an inverse “S” order is adopted to scan the image pixels. As shown in Fig. 2, a \(3 \times 3\) image block is used to illustrate this principle. The scan direction is marked as the blue line, and the block can be rearranged into a pixel sequence as \(p_1, p_2, \ldots, p_9\).

Suppose the host image \(I\) is an 8-bit gray level image sized as \(M \times N\). Then a pixel sequence \(p_1, p_2, \ldots, p_{M \times N}\) are obtained via the inverse “S” order scan. The differences of adjacent pixels are computed as:

\[
d_i = \begin{cases}
 p_i & i = 1 \\
 p_{i-1} - p_i & 2 \leq i \leq M \times N
\end{cases}
\] (1)

Considering the pixel values similarity between \(p_{i-1}\) and \(p_i\), a large quantity of \(d_i\) \((2 \leq i \leq M \times N)\) is equal or close to 0. The difference histogram is constructed based on these \(M \times N - 1\) difference statistics. Suppose the histogram bins from left to right are denoted by \(b(-255), b(-254), \ldots, b(-1), b(0), b(1), \ldots, b(254), b(255)\). Fig. 3 shows the \(512 \times 512\) Lena image’s difference histogram. Obviously most differences are concentrated around \(b(0)\). When the curve spreads away to both sides, it drops dramatically, and no differences fall into those bins far from \(b(0)\).

Basically, APD selects one pair of bins \(b(p_1)\) and \(b(z_1)\) (suppose \(p_1 < z_1\)) where \(b(p_1)\) and \(b(z_1)\) denote the peak point and zero point, respectively. Then the bins between \([b(p_1+1), b(z_1-1)]\) are shifted rightward one level. Thus \(b(p_1+1)\) are emptied for data embedding. That is, if a secret bit “1” is embedded, the differences equaling \(p_1\) are added by 1. If “0” is embedded, they are not changed.

To enhance the capacity, APD can also select two pairs of peak-zero points, e.g. \([b(p_1), b(z_1)]\) and \([b(z_2), b(p_2)]\) (suppose \(p_1 < z_1 < z_2 < p_2\)).

![Fig. 1. Principle of reversible data hiding based on histogram modification.](image1)

![Fig. 2. Inverse “S” scan of a \(3 \times 3\) image block.](image2)

![Fig. 3. The difference histogram of \(512 \times 512\) Lena image.](image3)
and $z_2 < p_2$). Then the bins between $[b(p_1 + 1), b(z_1 - 1)]$ are shifted rightward one level, and those between $[b(z_2 + 1), b(p_2 - 1)]$ are shifted leftward one level. Thus $b(p_1 + 1)$ and $b(p_2 - 1)$ are emptied for data embedding. The secret bits modulation is similar as that in one pair of peak-zero points embedding. Note the ranges of $[b(p_1), b(z_1)]$ and $[b(z_2), b(p_2)]$ must not be overlapped.

3. Proposed scheme

3.1. Motivation

However, the disadvantage of APD method is that the provided capacity is not very high due to only two pairs of peak-zero points at most are employed for data hiding. This limits its scope of application where a large quantity of data is to be embedded. In fact, more pairs of peak-zero points can be utilized. Motivated from this, this work designed a multilevel histogram modification mechanism for a large capacity data hiding.

3.2. Data embedding

In our scheme, the inverse “S” order is adopted to scan the image pixels for difference generation. The secret data are binary sequences produced by pseudo random number generator. In the data embedding stage, a multilevel histogram modification strategy is utilized. An integer parameter called embedding level EL ($EL \geq 0$) is involved to control the hiding capacity. A larger EL indicates more secret data can be embedded. As the embedding operations for $EL > 0$ are more complicated than those of $EL = 0$, we describe them for $EL = 0$ and $EL > 0$ separately.

Step 1. Inverse “S” scan i into a pixel sequence $p_1, p_2, \ldots, p_{M \times N}$.
Step 2. Compute the differences $d_i = (1 \leq i \leq M \times N)$ according to Eq. (1) and construct a histogram based on d_i ($2 \leq i \leq M \times N$).
Step 3. Select an EL. If $EL = 0$, execute Step 4. If $EL > 0$, go to Step 5.
Step 4. Data embedding for $EL = 0$.
Step 4.1. Shift the right bins of $b(0)$ rightward one level as:

$$d_i^r = \begin{cases}
 p_1 & \text{if } i = 1 \\
 d_i & \text{if } d_i \leq 0, 2 \leq i \leq M \times N \\
 d_i + 1 & \text{if } d_i > 0, 2 \leq i \leq M \times N
\end{cases}$$

Step 4.2. Examine $d_i^r = 0$ ($2 \leq i \leq M \times N$) one by one. Each difference equaling 0 can be used to hide one secret bit. If the current processing secret bit $w = 0$, it is not changed. If $w = 1$, it is added by 1. The operation is as:

$$d_i^w = \begin{cases}
 p_1 & \text{if } i = 1 \\
 d_i^r + w & \text{if } d_i^r = 0, 2 \leq i \leq M \times N \\
 d_i^r & \text{if } d_i^r \neq 0, 2 \leq i \leq M \times N
\end{cases}$$

The histogram modification strategy for $EL = 0$ is shown in Fig. 4(a)–(d) where the red and blue arrows indicate embedding “0” and “1”, respectively. After that, go to Step 6. (For interpretation of the references to colour in the text, the reader is referred to the web version of the article.)

Step 5. Data embedding for $EL > 0$.
Step 5.1. Shift the right bins of $b(EL)$ rightward $EL + 1$ levels, and shift the left bins of $b(-EL)$ leftward EL levels as:

$$d_i^l = \begin{cases}
 p_1 & \text{if } i = 1 \\
 d_i + EL + 1 & \text{if } d_i > EL, 2 \leq i \leq M \times N \\
 d_i - EL & \text{if } d_i < -EL, 2 \leq i \leq M \times N
\end{cases}$$

Step 5.2. Examine $d_i^l = 0$ ($2 \leq i \leq M \times N$) in the range of $[-EL, EL]$ one by one. The multilevel data embedding strategy is described as follows.

Step 5.2.1. Embed the secret data as:

$$d_i^{w_l} = \begin{cases}
 p_1 & \text{if } -EL < d_i^{w_l} < EL, 2 \leq i \leq M \times N \\
 2 \times EL + w & \text{if } d_i^{w_l} = EL, 2 \leq i \leq M \times N \\
 -2 \times EL - w + 1 & \text{if } d_i^{w_l} = -EL, 2 \leq i \leq M \times N
\end{cases}$$

Step 5.2.2. EL is decreased by 1.
Fig. 6. Example of data embedding for $EL = 0$.

Fig. 7. Example of data extraction and image recovery for $EL = 0$.

Fig. 8. Example of data embedding for $EL = 2$.
3.3. Data extraction and image recovery

The data extraction and image recovery is the inverse process of data embedding, and the details are described below.

Step 1. Inverse “S” scan \(I \) into a pixel sequence \(p'_i \) (\(1 \leq i \leq M \times N \)).

Step 2. Receive the EL parameter from the encoder via a secure channel. If \(EL = 0 \), then execute Step 3 and Step 4. If \(EL > 0 \), execute Step 5 and Step 6.

Step 3. For \(EL = 0 \), the host image pixels are recovered as:

\[
p_i = \begin{cases}
 p'_1 & \text{if } i = 1 \\
 p'_{i-1} - p'_i & \text{if } 1 < i \leq M \times N \\
 p'_i + 1 & \text{if } p'_{i-1} - p'_i \geq 1, 2 \leq i \leq M \times N
\end{cases}
\]

(8)

Step 4. If \(EL = 0 \), then execute Eq. (6) and then go to Step 6.

Step 5. If \(EL \neq 0 \), execute Step 5.2.1 and Step 5.2.2 repeatedly. If \(EL = 0 \), execute Step 5.2.1 and Step 5.2.2 repeatedly.

\[
d''_i = \begin{cases}
 p_1 & \text{if } i = 1 \\
 d'_i + w & \text{if } d'_i = 0, 2 \leq i \leq M \times N \\
 d'_i & \text{if } d'_i \neq 0, 2 \leq i \leq M \times N
\end{cases}
\]

(6)

Step 6. Generate the marked pixels sequence \(p' \) as:

\[
p'_i = \begin{cases}
 p_1 & \text{if } i = 1 \\
 p'_{i-1} - d''_i & \text{if } 2 \leq i \leq M \times N
\end{cases}
\]

(7)

Step 7. Rearrange \(p' \) and the marked image \(I' \) is obtained.
Step 4. For $EL = 0$, the secret data is extracted as:

$$w = \begin{cases} 0 & \text{if } p_{i-1} - p'_i = 0, 2 \leq i \leq M \times N \\ 1 & \text{if } p_{i-1} - p'_i = 1, 2 \leq i \leq M \times N \end{cases}$$

(9)

That is, if coming across $p_{i-1} - p'_i = 0 (2 \leq i \leq M \times N)$, a secret bit “0” is extracted. If $p_{i-1} - p'_i = 1 (2 \leq i \leq M \times N)$, a “1” is extracted. Rearrange these extracted bits and the original secret sequence is obtained. After that, go to Step 7.

Step 5. For $EL > 0$, obtain the first host pixel as $p_1 = p'_1$. The marked differences are computed as:

$$d''_i = \begin{cases} p'_i & \text{if } i = 1 \\ p_{i-1} - p'_i & \text{if } 2 \leq i \leq M \times N \end{cases}$$

(10)

Then the original differences are obtained as:

$$d_i = \begin{cases} d''_i - EL - 1 & \text{if } d''_i > 2 \times EL + 1, 2 \leq i \leq M \times N \\ d''_i + EL & \text{if } d''_i < -2 \times EL, 2 \leq i \leq M \times N \\ r & \text{if } d''_i \in (2 \times r, 2 \times r + 1), r = 0, 1, \ldots, EL, 2 \leq i \leq M \times N \end{cases}$$

(11)

Next the host pixel sequence is recovered as:

$$p_i = \begin{cases} p'_i & \text{if } i = 1 \\ p_{i-1} - d_i & \text{if } 2 \leq i \leq M \times N \end{cases}$$

(12)

Note Eqs. (10)-(12) are executed repeatedly, i.e., $p_i (2 \leq i \leq M \times N)$ is recovered in advance, and then p_{i+1} is recovered with the aid of p_i. In other words, a sequential recovery strategy is utilized.

Step 6. For $EL > 0$, the secret data extraction is associated with $EL + 1$ rounds. First set the round number $R = 1$.

Step 6.1. Extract the data as:

$$w_R = \begin{cases} 0 & \text{if } d''_i = 2 \times EL, 2 \leq i \leq M \times N \\ 0 & \text{if } d''_i = -2 \times EL + 1, 2 \leq i \leq M \times N \\ 1 & \text{if } d''_i = 2 \times EL + 1, 2 \leq i \leq M \times N \\ 1 & \text{if } d''_i = -2 \times EL, 2 \leq i \leq M \times N \end{cases}$$

(13)

Step 6.2. EL is decreased by 1 and R is increased by 1.

Step 6.3. If $EL \neq 0$, execute Steps 6.1 and 6.2 repeatedly. If $EL = 0$, execute Eq. (14) as:

$$w_R = \begin{cases} 0 & \text{if } d''_i = 0, 2 \leq i \leq M \times N \\ 1 & \text{if } d''_i = 1, 2 \leq i \leq M \times N \end{cases}$$

(14)

In Eq. (14) R is increased as $EL + 1$.

Step 6.4. Rearrange and concatenate the extracted data $w_R (1 \leq R \leq EL + 1)$ as:

$$w = \text{cat}(w_1, w_2, \ldots, w_{EL+1})$$

(15)

Hence, the hidden secret bits are obtained, and then go to Step 7.

Step 7. Rearrange the recovered sequence $p_i (1 \leq i \leq M \times N)$ into the host image I.

3.4. Examples

Two examples for $EL = 0$ and $EL = 2$ are given to explain the above principles with a 3×3 block investigated.

3.4.1. $EL = 0$

3.4.1.1. Data embedding. The data embedding principle for $EL = 0$ is shown in Fig. 6. First, the 3×3 block is inverse “S” scanned and the difference histogram is constructed. Next, the histogram shifting is performed. Suppose the secret bits are “10”. Thus the “1” can be hidden by changing the first difference 0–1, and the “0” is hidden by kept the second difference 0 not changed (marked as red). In this way, each marked pixel can be produced by its left neighbor subtracting the modified difference, as indicated by the blue arrows. Finally, rearrange these marked pixels into the marked block.

3.4.1.2. Data extraction and image recovery. As shown Fig. 7, the marked block is also inverse “S” scanned into a sequence first. As the first pixel is not changed during embedding, we have $p_1 = p'_1 = 55$. Second, the difference $d''_2 = p_1 - p'_2 = 3$. Obviously, its counterpart $d''_2 = 2$. Thus the original pixel associated with p'_2 is $p_2 = p_1 - d''_2 = 53$. Next, we obtain $d''_3 = p_2 - p'_3 = 2$, and its counterpart $d'_3 = 1$. Then $p_3 = p_2 - d'_3 = 52$. Repeat these operations for the remained marked pixels and all the host pixels are recovered. In this example, p_1 is obtained first, and then p_2, p_3, \ldots, p_9 are recovered consecutively.

As marked as red in Fig. 7, one bit secret data “1” is extracted from $p_3 - p'_4 = 1$, and a “0” is extracted from $p_7 - p'_8 = 0$.

3.4.2. $EL = 2$

3.4.2.1. Data embedding. As shown in Fig. 8, EL is set as 2 to describe the data embedding operations for $EL > 0$. The inverse “S” scan and the difference histogram construction are the same as those in $EL = 0$. Next, the histogram is shifted as follows. As $EL = 2$, the differences larger than 2 is added by 3 (i.e., $EL + 1$), and those smaller than −2 are subtracted by 2 (i.e., EL). For example, $d''_2 = d''_2 + 3 = 7$, $d''_3 = d''_3 - 2 = -6$.

Now the secret data can be embedded. Suppose the secret bits are “011011”. In the first round, only $d'_2 = -2$ and $d'_3 = 2$ are investigated for falling into [−2, 2] (i.e., [−EL, EL]). As “0” and “1” are embedded in d'_2 and d'_3, respectively, we obtain the marked
differences \(d'_6 = -2 - 1 = -3 \) and \(d'_9 = 2 + 3 = 5 \). In the second round, only \(d'_7 = -1 \) and \(d'_9 = 1 \) are investigated for falling into \([-1, 1]\) (i.e., \([-EL+1, EL-1]\)). As “1” and “0” are embedded in \(d'_7 \) and \(d'_9 \) respectively, we obtain \(d'_7 = -1 - 1 = -2 \) and \(d'_9 = 1 + 1 = 2 \). In the third round, only \(d'_4 \) is investigated for equaling 0. As “1” is embedded in \(d'_4 \), we obtain \(d'_4 = 0 + 1 = 1 \). All the marked differences are marked as red. Now each marked pixel can be produced by its left neighbor host pixel subtracting the modified difference, as indicated by the blue arrows. That is, as \(d'' = [80, 7, 6, 1, -6, -3, -2, 5, 2] \) are produced, the marked pixels are obtained as \(p'_1 = p_1 \), \(p'_2 = p_1 - d'_2 = 80 - 7 = 73 \), \(p'_3 = p_2 - d'_3 = 76 - 6 = 70 \), \(\ldots \), \(p'_5 = p_8 - d'_9 = 78 - 2 = 76 \). At last, the marked block is obtained by rearranging these marked pixels.

3.4.2.2 Data extraction and image recovery. The image pixel recovery for \(EL=2 \) is shown in Fig. 9. The marked block is also inverse “S” scanned into a sequence first. Obviously, the first pixel is not changed during embedding. Second, the difference \(d''_2 = p_1 - p'_2 = 80 - 73 = 7 \). Its counterpart \(d''_2 = 7 - (EL + 1) = 4 \). Thus the second host pixel is recovered as \(p_2 = p_1 - d''_2 = 76 \). Next, we obtain \(d''_3 = p_2 - p'_3 = 6 \), and its counterpart \(d''_3 = 3 \). Then \(p_3 = p_2 - d''_3 = 73 \). Sequentially repeat these operations for the remained marked pixels and all the host pixels are recovered.

For \(EL=2 \), the secret data is extracted with three (i.e., \(EL+1 \)) rounds. In the first round, \(EL \) is set as 2. As \(p_5 - p'_6 = -2 \times EL + 1 = -3 \), a secret bit “0” is extracted from \(p_5 \) and \(p'_6 \). Besides, as \(p_7 - p'_8 = 2 \times EL + 1 = 5 \), a “1” is extracted from \(p_7 \) and \(p'_8 \). These two secret bits \(w_1 = "01" \) are indicated as bold.

In the second round, \(EL \) is decreased by 1 and thus \(EL=1 \). As \(p_6 - p'_7 = -2 \times EL = -2 \), a “1” is extracted from \(p_6 \) and \(p'_7 \). Besides, as \(p_8 - p'_9 = 2 \times EL = 2 \), a “0” is extracted from \(p_8 \) and \(p'_9 \). The \(w_2 = "10" \) are indicated as italic.

In the third round, \(EL \) is further decreased by 1 and thus \(EL=0 \). As \(p_3 - p'_4 = 1 \), a “1” is extracted from \(p_3 \) and \(p'_4 \). The \(w_3 = "1" \) is indicated as underlined.
The last step is to rearrange all the extracted bits as \(w = \text{cat}(w_1, w_2, w_3) = "01101" \). It is exactly the same as the original secret data.

4. Discussion

4.1. Capacity estimation

The embedding capacity of our scheme is determined by two factors, the embedding level and the peak points around \(b(0) \). If no overflow or underflow occurs, the capacity \(\text{Cap} \) (bit) can be computed as:

\[
\text{Cap} = \begin{cases}
 b(0) & \text{if } EL = 0 \\
 \sum_{k=-EL}^{EL} b(k) & \text{if } EL > 0
\end{cases}
\]

4.2. Overflow and underflow prevention

Given a large \(EL \), the operations of histogram bins empty and shifting may cause overflow (i.e., \(p' > 255 \)) or underflow (i.e., \(p' < 0 \)). Actually, we can predict when they appear. The overflow or underflow first appears on the pixels with values near 255 or 0. In
particular, suppose p_{max} and p_{min} represent the maximum and minimum of the pixel values in I respectively. In the worst case, the distortions on p_{max} and p_{min} can be computed as:

$$
\begin{cases}
 p'_{\text{max}} = p_{\text{max}} + EL + 1 \\
 p'_{\text{min}} = p_{\text{min}} - EL
\end{cases}
$$

(17)

where p'_{max} and p'_{min} represent the marked pixels. When $p'_{\text{max}} \leq 255$ and $p'_{\text{min}} \geq 0$, no overflow or underflow occurs, and consequently EL must be set as:

$$
EL \leq \min (254 - p_{\text{max}}, p_{\text{min}})
$$

(18)

That is, EL should be no larger than the minimum of $254 - p_{\text{max}}$ and p_{min}. In other words, if a host pixel with value belonging to $[0, EL - 1]$, the underflow may appear on it. If belonging to $[255 - EL, 255]$, the overflow may appear.

In this work, the embedding level is tested as integers which are less than 10. This is because with the EL increasing, the overflow and underflow problem becomes increasingly prevalent. As a result, a lot of pixels with boundary values (i.e., near 255 or 0) in the cover image cannot be used for data embedding. Hence the capacity will not be enhanced any longer. Moreover, the length of the compressed location map is increased at the same time. As the
compressed location map is also hidden the cover image, the valid capacity for confidential data hiding is also decreased. Actually, EL selection depends on the cover image content. According to the experimental results, EL can be set as an integer less than 10 on the average for providing a maximum value of valid capacity.

In this work, an $M \times N$ location map LM is used for overflow and underflow prevention. Before data embedding, I is preprocessed. If a pixel with value falling into $[0, EL - 1]$ or $[255 - EL, 255]$, it is excluded for data embedding and a “1” is recorded in the LM, otherwise a “0” recorded. After all pixels processed, a binary LM is generated. Obviously, a larger EL corresponds to more “1”s and
fewer “0”s in it. Next, the LM is losslessly compressed. In our case, the arithmetic coding is used for its high efficiency. The compressed map \(LM_c\) can be also hidden in \(I\). In particular, \(I\) is segmented into two parts, \(I_1\) and \(I_2\) for embedding \(w\) and \(LM_c\) respectively. That is, some pixels in \(I_2\) are selected according to a secret key, and their least significant bits (LSB) are replaced by \(LM_c\), and these LSB bits are hidden in \(I_1\) concatenated with \(w\). In decoder, the same key is used to retrieve the selected pixels’ LSB bits in \(I_2\) and thus \(LM_c\) is reconstructed. After lossless decompression, \(LM\) is further obtained. Then we can extract \(w\) and the original LSB bits of the selected pixels in \(I_2\). Finally, the host image can be recovered by removing \(w\) from \(I_1\) and replacing LSB bits of the selected pixels in \(I_2\) with the latter part of data extracted from \(I_1\).

5. Experimental results and comparison with other schemes

As shown in Fig. 10, six 512 \(\times\) 512 gray level images are selected as test images. Table 1 lists the capacity (bit) and PSNR (dB) values of the proposed scheme with various \(ELs\). The PSNR (peak signal to noise ratio) is computed as:

\[
PSNR = 10 \times \log_{10} \frac{255^2}{MSE} \quad (dB)
\]

where MSE (mean square error) between \(I\) and \(I’\) is defined as:

\[
MSE = \frac{1}{M \times N} \sum_{i=1}^{M} \sum_{j=1}^{N} (I(i, j) - I'(i, j))^2
\]

From Table 1, we find a larger \(EL\) leads to a larger capacity. Even for \(EL = 9\), the average PSNR is higher than 30 dB. As human eyes are not sensitive to distortions when PSNR > 30 dB, the marked images’ visual qualities are acceptable.

Our scheme is compared with two state-of-the-art methods proposed by Li et al.’s method [16] and Kim et al.’s method [17]. The reason to compare with the method of [16] lies in that both methods are based on inverse scan order. That is, the difference histogram is exactly the same whereas a multilevel histogram modification strategy is used in our scheme. Hence the performance improvement achieved by this novel strategy is validated in our work. In addition, the reason to compare with the method of [17] lies in that both methods adopt similar multilevel histogram modification strategies. However, as our scheme is based on a pixel-wise differential mechanism instead of block-wise processing in [17], the capacity and the quality of marked images are enhanced simultaneously as proved in the following experimental results.

First, our scheme is compared with Li et al.’s method [16] for both are based on APD histogram modification. In [16], only two cases, APD1 and APD2, are provided for data embedding. Here APD1
and APD₂ denote one and two pairs of peak-zero points are used respectively. The comparison results are also given in Table 1. Our scheme can provide a higher capacity than Li et al.’s method with good marked images quality.

Next, our scheme is compared with Kim et al.’s method [17]. Although both are based on multilevel histogram modification, the histogram construction mechanisms are different. In general, the capacity of difference histogram modification is jointly affected by the total number of differences and the on their concentricity to b(0). In [17], the differences are computed based on subimages’ correlation and hence the number of differences is determined by the number of subimages. For example, if a 512 × 512 host image is subsampled into 16 equal-sized subimages, there are 512 × 512 × 15/16 = 245760 differences produced. In contrast, there are 512 × 512 − 1 = 262143 differences produced in our scheme. The histogram bins belonging to [b(−30), b(30)] obtained by [17] and our scheme are shown in Fig. 11. Obviously, more differences in our histograms are concentrated around b(0). As a result, a larger capacity can be provided in our scheme than in [17]. Moreover, b(−1) is emptied after embedding in [17] for the shifting leftward is one level farther than that in our scheme, and consequently the introduced distortions are more serious.

The performance comparisons of our scheme (marked as blue) and Kim et al.’s method (marked as red) are shown in Figs. 12–17. The horizontal axis denotes the EL set from 0 to 9. The vertical axes of capacity and PSNR are normalized as [0, 1.0]bpp (bit per pixel) and [30, 55] dB, respectively. In these experiments, the host images are partitioned into 16 equal-sized subimages in [17]. The six marked images obtained by our scheme and Kim et al.’s scheme are shown in Figs. 18–23. All these results demonstrate not only the capacities but also the PSNRs in our method are improved. In other words, even though more secret data embedded in our scheme, the marked images quality is still better than those in [17].

6. Conclusions

A reversible data hiding scheme is proposed in this paper. The multilevel histogram modification is employed for data embedding. On one hand, a higher capacity is provided compared with one or two level histogram modification based methods. On the other hands, as secret data is embedded in differences of adjacent pixels values, the marked images quality is improved compared with that in previous multilevel histogram modification based work.

Acknowledgments

The authors thank the editor and the anonymous reviewers for their constructive comments and valuable suggestions for readability improvement. This work is financially supported by the National Scientific Fund of China (Nos. 61003255 and 61071128).

References

